
519 

A periodic boundary-layer flow in 
magnet ohydrodynamics 

By D. L. TURCOTTE AND J. M. LYONS 
Graduate School of Aerospace Engineering, Cornell University 

(Received 2 January 1962) 

It is the purpose of this paper to solve a boundary-value problem posed by 
induction electromagnetic pumps and generators. Solutions are obtained by an 
expansion technique and a momentum method for the laminar, incompressible 
flow problem. For large values of the interaction parameter ( , u 2 ~ H i  A l p , )  viscous 
effects are shown to be restricted to periodic boundary layers. In regions of high- 
field strength a local Hartmann solution is valid. Where the applied field is weak 
an inertial boundary layer is present which thickens in the upstream direction. 
A logical explanation of this phenomenon is given. The condition that a boundary- 
layer type flow exist is obtained and is shown to be in general satisfied. The 
results show that inviscid theory may be used to calculate the overall performance 
of electromagnetic pumps and generators while the boundary-layer theory 
developed here may be used to obtain the wall shear stress. 

1. Introduction 
Boundary-value problems solved in fluid mechanics usually arise from actual 

applications. Examples are Poiseuille flow and the boundary layer on a flat plate. 
Similarly, the important solutions in magnetohydrodynamics are usually related 
to applications. One of the best examples is Hartmann flow (see Hartmann 1937), 
which finds an application in the crossed-fields electromagnetic conduction pump 
used in nuclear reactors. The Hartmann solution determines the velocity profile 
for the laminar flow of a viscous, incompressible fluid in the presence of uniform 
electric and magnetic fields. 

While several designs of Hartmann-type pumps are in use, inductance-type 
electromagnetic pumps offer stiff competition. The induction-type pump utilizes 
a moving magnetic field which essentially drags the conducting liquid with it, 
eliminating the necessity for electrodes. The moving magnetic field may be 
generated by alternating current in stationary coils or a steady current in moving 
coils. A thorough discussion of the advantages of the induction-type pump has 
been given by Blake (1959). 

It is the purpose of this paper to solve a boundary-value problem posed by 
induction electromaguetic pumps. Since induction designs are also being con- 
sidered in magnetohydrodynamic power generation (see Bernstein et al. 196l), the 
results obtained here should also be applicable in this field. The performance of 
induction-type pumps has been studied by Blake (1957), but this author did not 
consider viscous effects. Harris ( 1960) discussed qualitatively the viscous effects, 
but did not attempt a solution of the basic equations. 
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2. Formulation of the problem 
The idealized problem is a two-dimensional, laminar flow of an incompressible, 

electrically conducting fluid between parallel walls. The magnetic field is pre- 
scribed and is of the form 

Hv = Hasin [27r r q ) ]  , H, = 0. (1) 

The field is uniform across the channel and moves down the channel with ;I 
velocity uf. The problem is illustrated in figure 1. Prescribing the field as in 
equation (1) implies neglect of induced fields and of fringing of the applied field. 

FIGURE 1. Formulation of the problem in laboratory co-ordinates. 

Induced fields may be neglected if the magnetic Reynolds number (9tm = puauh) 
is sufficiently small. For all devices using liquid metals the appropriate magnetic 
Reynolds number is indeed small, usually about 0.1 to 0.01. If induced effects are 
negligible, the fringing of the applied field is obtained by solving Laplace’s 
equation in the region between the walls of the channel. The assumption of a field 
which is uniform across the channel is appropriate if the ratio of channel width ( d )  
to the wavelength of the applied field ( A )  is small. Again this requirement is 
satisfied in actual devices. A detailed quantitative consideration of these approxi- 
mations has been given by Lyons & Turcotte (1962). 

Since the magnetic field is prescribed, only the momentum and continuity 
equations, along with an Ohm’s law, need be considered in obtaining a solution. 
The equations are written in a reference frame moving at  a velocity ufwith respect 
to the laboratory frame. With x’ = x1 - aft, equation (1) may be rewritten 

Hv = Hasin (%x’/A), H, = 0. (2) 

Since in this reference frame the velocity boundary conditions are also inde- 
pendent of time, a steady solution periodic in x’ might‘be expected. Some 
discussion of the pressure is necessary here. One of the boundary conditions in the 
laboratory co-ordinates for an actual device is that the input pressure a t  x = xo be 
given. Then the pressure increase through the pump is the output. Therefore the 
pressure in the (x’, t ’ )  co-ordinate system is in fact a function of time t’. However 
the time derivative of the pressure does not enter the governing equations, only 
the gradient, so a steady solution periodic in x’ is in fact appropriate. However, 
in applying the results it is necessary to note that the pressure level in the (d, t ’ )  



A periodic boundary-layer flow in magnetohydrodynamics 52 1 

co-ordinate system is in fact a function oft'. The appropriate equations may now 
be written 

V . U '  = 0, (3) 

(4) 
1 P 
P P 

j = a[E+,u(u' x H)], ( 5 )  

u ' . V u '  = - - V p + v V z u ' + - ( j  xH) ,  

where M.K.S. units are used. The electric-field vector E is taken to be zero since no 
applied electric field is present and no induced electric field occurs in the steady 
problem considered. Such an assumption is appropriate if either (1) the induced 
currents close on themselves as in an annular geometry, or ( 2 )  the wire (or wires) 
closing the current paths has negligible resistivity and moves with a velocity uf 
with respect to the laboratory frame of reference (see Panofsky & Phillips 1955). 
The first condition is satisfied in most actual designs. The current flows only in the 
x-direction. 

When equations (2) and ( 5 )  are substituted into equation (4) with equation (3) 
the following component equations are obtained: 

aul av' 
ax! ayl 
--+- = 0, 

and the boundary conditions may be written 

u' = uf at y' = 0,  d ;  

v'= 0 at y' = 0 , d ;  

and 

The problem as posed is illustrated in figure 2. It will now be postulated that 
viscous effects are restricted to boundary-layer regions near the walls of the 
channel. The conditions under which such a hypothesis is valid will be discussed 
when solutions are obtained. As in other boundary-layer problems the inviscid 
solution valid in the core of the channel may be matched to the boundary-layer 
solutions valid near the walls. Also the equations may be simplified according to 
the methods of Prandtl (see, for example, Schlichting 1955). The appropriate 
boundary-layer approximations reduce equations (7) and (8) to 

(9) 
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The inviscid-core solution, as obtained by Blake (1957) and Harris (1960), may be 
written u' = -uf+ue, 2)' = 0,  

This is uniform flow with constant velocity u, in the laboratory reference frame, 
and static pressure varying with q and t. As previously noted the static pressure 
varies with both x' and t' in order to satisfy the inlet condition; however the 

FIGURE 2. Formulation of the problem in field-fixed co-ordinates. 

pressure gradient is a function only of x'. When equation (1 1) is combined with 
equations (9) and (lo), the boundary-layer problem is formulated; viz. 

along with equation (6) and the boundary conditions 

u'= -uf, v' = 0 a t  y ' =  0;  

u' = -uf+ue at y' = co. 

Since the boundary layer is assumed to be thin compared with the width of the 
channel, the conditions at  the outer edge of the boundary layer are applied at 
y = m in boundary-layer co-ordinates. Note that the body-force term goes to 
zero at  theouter edge of the boundarylayer where the pressure gradient is balanced 
by the magnetic body force, and the body-force term always acts to reduce the 
velocity deficit within the boundary layer. For this reason a periodic solution 
can be expected. 

In  order to obtain further insight into the problem, dimensionless variables and 
parameters are introduced. Let 

x = x'/h, y = y'/h, u = U'IU,, 

'Uf - u e  p2CTHgh , R e = - .  21, 

V 
S=--- , Q = -  

u e  Pue 

Equations (6) and (12) may be written in terms of these variables as 

au av 
ax ay -+- = 0,  

u-++- = -Q(S+u)sinz2mx+-- 
au au 1 azu 
ax ay R, ay2* 
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The interpretation of the viscous Reynolds number (Re) is well known. The inter- 
action parameter (&) represents the ratio of the pondermotive force to the inertia 
force. The square of the Hartmann number (M2 = R,Q) represents the ratio of 
the pondermotive force to the viscous force. The Hartmann number defined above 
differs from the usual form in that it is based on wavelength rather than channel 
width. 

If Q is assumed to be large the inertia terms on the left side of equation (14) 
should be negligible as long as the forcing term on the right side is large. Thus a 
balance between the body force and the viscous term should be appropriate except 
where the applied magnetic field nearly vanishes. It will be seen that this balance 
leads to a Hartmann-type boundary-layer solution (see Hartmann 1937) valid 
locally. The inertia terms become important only where the interaction term 
becomes small. The inertia terms retard the growth of the Hartmann-type 
boundary layer in the region where the interaction term is small. For all liquids 
of interest the viscosity is small so that the viscous Reynolds number and 
Hartmann number are large. Also, high-performance induction devices require 
large interaction parameters. For the relatively low-performance induction 
pump tested by Blake (1957), for example, Q = 2.75, Re = 4.72 x lo6 and 
M = 3.61 x lo3. A series solution valid for large Q will be obtained first. Then a 
momentum method will be applied to obtain a solution valid for Q of order one. 

3. Power-series solution 
Since equation (14) is a non-linear partial differential equation, it is not possible 

to obtain a general solution. Instead a series solution in powers of l/Q, valid for 
large Q, will be found. If a solution of the form 

u = U, + Q-lul + . . . , v = v0 + Q-lvl + . . . (15) 

is substituted into equations (13) and (14), the equations for uo, ul, vo and v1 may 
be written 

0 = - M2(X + uo) sin2 2nx + - , (16) 
azu0 

aY2 
auo avo 
ax ay 
-+- = 0,  

u -+v - = -(sin22nx)ul+--, auo au, 1 a2ul 
oax o ay ~2 ay2 

The solution of equations (16) and (17) which satisfies the required boundary 
conditions (uo = - 1 -S ,  vo = 0 at y = 0;  uo = -8 at y = co) is 

u, = -exp{-MyIsin2nzl}-S, (20) 

(21) 

271 
O-M 

v - -cot 2 n z [ ~ y e x p { - ~ y  lsin2mxl}- Icsc2nxl (exp{-My lsin2nxI)- 111. 

This is a Hartmann-type flow where the local value of the Hartmann number 
ML = M Isin2rxI determines the velocity profile. In  regions where the local 
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Hartmann number is large the profile has a boundary-layer character. The 
boundary layer has its minimum thickness where the applied magnetic field is 
a maximum, and according to this solution the thickness goes to infinity when the 
magnetic-field strength goes to zero. The boundary-layer thickness is small 
compared with the channel width only if ,uHd J(p/cr) B 1, so that the local 
Hartmann number based on channel width must be large. 

The solution for the first-order correction to this local Hartmann flow will now 
be found. It is clear from the form of equation (18) that for M & 1 with Q large 
the correction term u1 will be appreciable only when l/sin2 2n-x is large. As aresult, 
if Q issufficientlylarge the correction to the zero-order solution is appreciable only 
where lsin 27~x1 < 1. Therefore the approximation sin 2n-x = 2rx is made both in 
equation (18) and in equations (20) and (21) when substituted into equation (18). 
The fact that the solution obtained is in error for Isin 27~x1 of order one does not 
matter since both the solution obtained and the actual solution are negligibly 
small in this region under the conditions stated. The resulting equation for u1 may 
be written 

where the upper sign is applicable for x > 0 and the lower for x < 0. The solution 
to equation (22) is obtained by using the standard methods for first-order, inhomo- 
geneous, linear differential equations. The solution that satisfies the required 
boundary conditions (ul = 0 at y = 0 and co) may be written 

where 5 = 2n-x and q = 2nxMy. If desired, zll may be obtained from equation (19). 
Equations (20) and (23) are combined with equation (15) to give the x-component 
of velocity correct to first-order in I/&, 

(24) 
7T 

u = - (e+V + 8) + __ [' er2V + ( - $ 5  { 1 + $8) r/ + $ 8 ~ ~ )  eT7]. 

From the above expression it is clear that we have really obtained a series solution 
in inverse powers of the parameter Q ( 2 7 r ~ ) ~ .  That is, equation (24) is an asymptotic 
expansion valid away from the region near x = 0. The effects of inertia on the 
local Hartmann flow are appreciable, for large Q, onlywhen [Q(2n-~)~]-l  is of order 
one. 

Before interpreting this result the dimensionless displacement thickness of the 
boundary layer 

Qt3 

(6. = /om[-S-u]dZ/) 

is found from equation (24). This may be written 

where again the upper sign applies for x > 0,  i.e. in the direction of flow in 
laboratory co-ordinates, and the lower sign for x < 0. The zero-order displacement 
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thickness, the first term in equation (25)) and the zero-order thickness with the 
first-order correction are plotted against position in figure 3 for Q = 100 and 
S = 0.5. This plot clearly demonstrates that the local Hartmann flow is valid 
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FIG~RE 3. Dependence of the dimensionless displacement thickness on position. Q = 100, 
S = 0-5. - - -, Zero order; - -, corrected to first order; -, momentum method. 
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FIGURE 4. Dependence of the local skin-friction coefficient on position. Q = 100, S = 0.5. 
_ - -  , Zero order; - -, corrected to fist order; __ , momentum method. 

away from the nodal points where the applied magnetic field approaches zero. 
This result would seem to justify the initial hypothesis that a periodic boundary- 
layer solution is appropriate. 

It is interesting to note that the first-order perturbation thickens the boundary 
layer upstream of the node while the boundary layer is thinner downstream of the 
node. At first this may seem surprising. However, it  must be remembered that 
in the moving co-ordinate system, in which the steady solution is found, the walls 
are translating in the negative x-direction with a velocity uf while the fluid core is 
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translating in the same direction with a velocity uf - ue. Thus, in the steady-flow 
co-ordinate system the boundary layer actually represents a flow in the negative 
x-direction; therefore it is not surprising to find the diffusion of vorticity to be 
greater upstream of the node in laboratory co-ordinates. 

The wall shear stress (7,) may also be obtained from equation (24); the local 
skin-friction coefficient (cf = ~ ~ / + p u : )  is found to be 

The dependence of the skin-friction coefficient on position is given in figure 4 for 
Q = 100 and 8 = 0.5; the zero-order solution and the solution with first-order 
correction are included. The skin-friction behaviour is consistent with the dis- 
placement-thickness results discussed above. In  order to verify further the type 
of solution postulated a momentum method will now be applied. 

4. Momentum method 
Momentum-integral methods have often been used to obtain approximate 

solutions to boundary-layer problems (see Schlichting 1955). Probably the best 
known example is the solution given by von K&rm&n and Pohlhausen for the 
general problem of an incompressible, two-dimensional boundary layer with a 
pressure gradient. The required momentum equation for the present problem is 
obtained by integrating equation (14) from y = 0 to y = 00. The result, using 
equation (13)) may be written 

The essence of the momentum method consists of assuming an appropriate 
relation for the velocity profile u ( y )  in the boundary layer, such that i t  satisfies 
the boundary conditions on u while retaining a free parameter, usually a 
boundary-layer thickness, to be determined from equation (27). 

In  the present problem an exponential dependence of velocity on position 
is chosen, i.e. 

This functional form satisfies the required boundary conditions and reduces to 
the exact solution of the equations when a local Hartmann solution is appropriate. 
While equation (28) forces a similar profile, this restriction should not lead to 
serious error, since the periodicity of the present problem reduces the accumula- 
tion of error. An improved velocity profile would have two free parameters to be 
determined by the method of von K&rm&n and Pohlhausen. However, the com- 
plexity of the two-parameter form in the present problem is so great that its use 
is of doubtful value. The parameter 6*(x) in equation (28) is identical with the 
displacement thickness previously introduced. 

When equation (28) is substituted into equation (29)) a first-order differential 
equation for the dimensionless displacement thickness is obtained: 

Q 2 -- - 2 ___ (sin2 2nx) - d&*2 

ax s++ R,(S + 8)  ' 
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The solution of this equation may be written 

where 

sin 471.x 
471. 

Q=x--  , x > o .  

The arbitrary constant of integration has been evaluated so that a periodic 
solution is obtained. An examination of equation (29) shows that the solutions 
approach periodicity for arbitrary initial conditions; therefore the value of the 
constant used in equation (30) is appropriate. In  figure 3 the displacement 
thickness given by the momentum method is compared with the values obtained 
from the local Hartmann solution and the expansion procedure. Agreement 
between the momentum method and the local Hartmann solution is excellent 
where the M.H.D. interaction is strong. The initial deviations given by the 
expansion technique are also in good agreement with the deviations predicted 
by the integral method. The overall thickness of the boundary layer may now 
be estimated. The integral solution shows that the effect of the inertial terms is 
to retard the growth of the boundary layer in the areas of weak interaction. 
Therefore an estimate for the maximum thickness of the boundary layer may be 
obtained by taking the thickness of the Hartmann or zero-order solution at  the 
point where the first-order correction previously obtained is of order one. The 
estimated maximum displacement thickness obtained in this manner is 

S*(R,)$ = &-A (31) 

and for the conditions considered in figure 3, equation (31) gives &*(Re)* = 0.45, 
which is in good agreementwith the momentum method. Clearly for the boundary- 
layer theory to be valid the displacement thickness given in equation (31) must 
be small compared with the channel width. This requirement may be reduced 
to the condition R i Q i d / h  B 1. Because of the large values of the viscous 
Reynolds number in actual devices this condition is almost always satisfied 
and viscous effects are in fact restricted to boundary layers. For example 
in the pump tested by Blake (1957), R$QA d / h  = 200. 

The local skin-friction coefficient is related to the displacement thickness for 
the assumed velocity profile according to the relation 

C,(R,)* = 2/&*(R,)*. (32) 

The local skin friction given by the momentum method is compared with the 
values obtained from the local Hartmann solution and the expansion procedure 
in figure 4. The discussion of the displacement thickness given above is also 
applicable for the shear stress. 
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